|  | 
2#
 
 
 楼主|
发表于 2021-9-24 11:20:10
|
只看该作者 
| 本帖最后由 Doreen 于 2021-9-24 11:22 编辑 
 如果上面link 没有权限打开, 请参考下面的内容
 
 Design Guides:IO LIB Protocal RS232
 
 TX
 
 module async_transmitter(clk, TxD_start, TxD_data, TxD, TxD_busy);
 input clk, TxD_start;
 input [7:0] TxD_data;
 output TxD, TxD_busy;
 
 parameter ClkFrequency = 50000000; // 50MHz
 parameter Baud = 115200;
 
 // Baud generator
 parameter BaudGeneratorAccWidth = 16;
 parameter BaudGeneratorInc = ((Baud<<(BaudGeneratorAccWidth-4))+(ClkFrequency>>5))/(ClkFrequency>>4);
 reg [BaudGeneratorAccWidth:0] BaudGeneratorAcc;
 wire BaudTick = BaudGeneratorAcc[BaudGeneratorAccWidth];
 wire TxD_busy;
 always @(posedge clk) if(TxD_busy) BaudGeneratorAcc <= BaudGeneratorAcc[BaudGeneratorAccWidth-1:0] + BaudGeneratorInc;
 
 // Transmitter state machine
 reg [3:0] state;
 assign TxD_busy = (state!=0);
 
 always @(posedge clk)
 case(state)
 4'b0000: if(TxD_start) state <= 4'b0100;
 4'b0100: if(BaudTick) state <= 4'b1000;  // start
 4'b1000: if(BaudTick) state <= 4'b1001;  // bit 0
 4'b1001: if(BaudTick) state <= 4'b1010;  // bit 1
 4'b1010: if(BaudTick) state <= 4'b1011;  // bit 2
 4'b1011: if(BaudTick) state <= 4'b1100;  // bit 3
 4'b1100: if(BaudTick) state <= 4'b1101;  // bit 4
 4'b1101: if(BaudTick) state <= 4'b1110;  // bit 5
 4'b1110: if(BaudTick) state <= 4'b1111;  // bit 6
 4'b1111: if(BaudTick) state <= 4'b0001;  // bit 7
 4'b0001: if(BaudTick) state <= 4'b0010;  // stop1
 4'b0010: if(BaudTick) state <= 4'b0000;  // stop2
 default: if(BaudTick) state <= 4'b0000;
 endcase
 
 // Output mux
 reg muxbit;
 always @(state[2:0] or TxD_data)
 case(state[2:0])
 0: muxbit <= TxD_data[0];
 1: muxbit <= TxD_data[1];
 2: muxbit <= TxD_data[2];
 3: muxbit <= TxD_data[3];
 4: muxbit <= TxD_data[4];
 5: muxbit <= TxD_data[5];
 6: muxbit <= TxD_data[6];
 7: muxbit <= TxD_data[7];
 endcase
 
 // Put together the start, data and stop bits
 reg TxD;
 always @(posedge clk) TxD <= (state<4) | (state[3] & muxbit);  // register the output to make it glitch free
 
 endmodule
 
 RX
 // RS-232 RX module
 // (c) fpga4fun.com KNJN LLC - 2003, 2004, 2005, 2006
 
 module async_receiver(clk, RxD, RxD_data_ready, RxD_data, RxD_endofpacket, RxD_idle);
 input  clk, RxD;
 output RxD_data_ready;  // onc clock pulse when RxD_data is valid
 output [7:0] RxD_data;
 
 parameter ClkFrequency = 25000000; // 25MHz
 parameter Baud = 9600;//115200;
 
 // We also detect if a gap occurs in the received stream of characters
 // That can be useful if multiple characters are sent in burst
 //  so that multiple characters can be treated as a "packet"
 output RxD_endofpacket;  // one clock pulse, when no more data is received (RxD_idle is going high)
 output RxD_idle;  // no data is being received
 
 // Baud generator (we use 8 times oversampling)
 parameter Baud8 = Baud*8;
 parameter Baud8GeneratorAccWidth = 16;
 wire [Baud8GeneratorAccWidth:0] Baud8GeneratorInc = ((Baud8<<(Baud8GeneratorAccWidth-7))+(ClkFrequency>>8))/(ClkFrequency>>7);
 reg [Baud8GeneratorAccWidth:0] Baud8GeneratorAcc;
 always @(posedge clk) Baud8GeneratorAcc <= Baud8GeneratorAcc[Baud8GeneratorAccWidth-1:0] + Baud8GeneratorInc;
 wire Baud8Tick = Baud8GeneratorAcc[Baud8GeneratorAccWidth];
 
 ////////////////////////////
 reg [1:0] RxD_sync_inv;
 always @(posedge clk) if(Baud8Tick) RxD_sync_inv <= {RxD_sync_inv[0], ~RxD};
 // we invert RxD, so that the idle becomes "0", to prevent a phantom character to be received at startup
 
 reg [1:0] RxD_cnt_inv;
 reg RxD_bit_inv;
 
 always @(posedge clk)
 if(Baud8Tick)
 begin
 if( RxD_sync_inv[1] && RxD_cnt_inv!=2'b11) RxD_cnt_inv <= RxD_cnt_inv + 2'h1;
 else
 if(~RxD_sync_inv[1] && RxD_cnt_inv!=2'b00) RxD_cnt_inv <= RxD_cnt_inv - 2'h1;
 
 if(RxD_cnt_inv==2'b00) RxD_bit_inv <= 1'b0;
 else
 if(RxD_cnt_inv==2'b11) RxD_bit_inv <= 1'b1;
 end
 
 reg [3:0] state;
 reg [3:0] bit_spacing;
 
 // "next_bit" controls when the data sampling occurs
 // depending on how noisy the RxD is, different values might work better
 // with a clean connection, values from 8 to 11 work
 wire next_bit = (bit_spacing==4'd11);
 
 always @(posedge clk)
 if(state==0)
 bit_spacing <= 4'b0000;
 else
 if(Baud8Tick)
 bit_spacing <= {bit_spacing[2:0] + 4'b0001} | {bit_spacing[3], 3'b000};
 
 always @(posedge clk)
 if(Baud8Tick)
 case(state)
 4'b0000: if(RxD_bit_inv) state <= 4'b1000;  // start bit found?
 4'b1000: if(next_bit) state <= 4'b1001;  // bit 0
 4'b1001: if(next_bit) state <= 4'b1010;  // bit 1
 4'b1010: if(next_bit) state <= 4'b1011;  // bit 2
 4'b1011: if(next_bit) state <= 4'b1100;  // bit 3
 4'b1100: if(next_bit) state <= 4'b1101;  // bit 4
 4'b1101: if(next_bit) state <= 4'b1110;  // bit 5
 4'b1110: if(next_bit) state <= 4'b1111;  // bit 6
 4'b1111: if(next_bit) state <= 4'b0001;  // bit 7
 4'b0001: if(next_bit) state <= 4'b0000;  // stop bit
 default: state <= 4'b0000;
 endcase
 
 reg [7:0]RxD_data;
 always @(posedge  RxD_data_ready)  RxD_data=RxD_data_r;
 
 
 reg [7:0] RxD_data_r;
 always @(posedge clk)
 if(Baud8Tick && next_bit && state[3]) RxD_data_r <= {~RxD_bit_inv, RxD_data_r[7:1]};
 
 reg RxD_data_ready, RxD_data_error;
 always @(posedge clk)
 begin
 RxD_data_ready <= (Baud8Tick && next_bit && state==4'b0001 && ~RxD_bit_inv);  // ready only if the stop bit is received
 //RxD_data_ready <= (Baud8Tick && state==4'b0001 && ~RxD_bit_inv);  // ready only if the stop bit is received
 RxD_data_error <= (Baud8Tick && next_bit && state==4'b0001 &&  RxD_bit_inv);  // error if the stop bit is not received
 end
 
 reg [4:0] gap_count;
 always @(posedge clk) if (state!=0) gap_count<=5'h00; else if(Baud8Tick & ~gap_count[4]) gap_count <= gap_count + 5'h01;
 assign RxD_idle = gap_count[4];
 reg RxD_endofpacket; always @(posedge clk) RxD_endofpacket <= Baud8Tick & (gap_count==5'h0F);
 
 endmodule
 
 | 
 |