dongliudongliu 发表于 2015-7-22 15:07:46

【Altera SoC体验之旅】+ 正式开启OpenCL模式

本帖最后由 dongliudongliu 于 2015-7-22 15:24 编辑

本文转自:http://bbs.eeworld.com.cn/thread-455862-1-1.html

最近可谓几经周折。先前的Lark板子虽然看上去很高端,但实在是资料太少,对于我的应用来说从头开始搭模块不太现实。
与EEWorld 影子 沟通后,在她帮助下,和网友 @chenzhufly 互换了板子,他用的是ArrowSoC。这个板子资料丰富一些,至少在RocketBoard上有很多教程和资料。
一切看上去都很完美,但做完所有实验后发现,本来Altera承诺的“支持OpenCL开发”结果是一句口号,我找遍了官网也没有发现这块板子的BSP。问过了Arrow的员工 @Alex,得到回答也是暂时还没有BSP。
于是不得以,又换了一块支持OpenCL开发的板子——友晶的DE1-SoC,这块性价比最高的板子。与我交换板子的是 @coyoo 大神(《深入理解Altera FPGA应用设计》作者),不得不说,论坛果然卧虎藏龙啊。

有幸参加这次比赛,有幸体验了三块不同的板子(总共才4块,太值了),有幸认识了一群技术上的大牛,想想这次赚大发了。

一定有同学会问,你到底要做什么东东,非要用Open CL?

不止一个人问过这个问题了,其实我看到这个比赛时,想想自己都已经不是学生了,没有那么多课外时间搞比赛,所以没打算报名,但刚好看到在全球计算机大会上Altera与百度合作研发的深度神经网络加速器(DNN by FPGA),而自己恰好又有个想法在FPGA上完成卷积神经网络的搭建(工作相关),各种机缘巧合下,毅然报名了。

神经网络有什么用途?它是模拟人大脑的组织形式,用大量神经元之间相互传递消息实现认知功能的,最简单的例子就是物体识别,人看到一张桌子,就会知道这是个桌子,而不是凳子,因为符合“桌子”特征。在人脑中已经通过大量训练,将“桌子”特征记录在神经元之间的权值上了。而对于计算机,通过摄像头看到桌子时,只是一堆像素值(RGB),浅层次的处理如中值滤波,相关,Sobel滤波是无法认知“桌子”这个特征的,而只是将某一维度的信息呈现给用户,让用户自己判断。为了将信息有效组织,需要构建大量的相同功能的神经元,每个单元执行最基本的操作(将输入累加,满足条件时输出给下一个神经元),这样层层累积,最终实现深层次的认知功能,在最末端的神经元直接可以回答“这是个桌子”或者“这是个凳子”或者“这是个椅子”。
卷积神经网络是在上面神经网络基础上做了一些近似。将同一层的神经元权值共享,减少了连接数,有利于计算机实现。

好了,说了这么多,其实说白了一句话就是,我目前算法是用C/C++以及CUDA实现的,如果迁移到FPGA上运行,使用OpenCL是最快的方式,也是这次体验最重要的内容(以前在FPGA上开发都是VHDL/Verilog,设计+仿真验证+调试太花时间,短期内难以完成,而且我目前只关心算法,不关心底层实现,如果能实现最基本的功能,这一阶段就算完成了,后面再考虑资源、时序、性能上的优化。

拿到板子后,仔细阅读了官方文档,搭建OpenCL环境。

今天时间关系,不再详细展开OpenCL的语法、结构,直接上例子。

烧写TF卡,流程参考我之前的帖子。烧写完成,将SW10拨码开关设置为“01010”(这个很重要,如果没有配置FPGA,后面脚本会lock),上电启动。
上一张图:

PC上打开Putty,设置波特率115200,用户名root,没有密码,进入系统。

可以看得出系统是Poky 8.0 (Yocto Project 1.3 Reference Distro) 1.3 socfpga ttyS0,和之前Lark板子上默认的系统是一样的。
ls一下,当前目录下有很多例程。
先做个准备活动:运行初始化OpenCL环境的脚本:
source ./init_opencl.sh
很快就结束了。我们打开看下这个脚本内容都是什么东东?
root@socfpga:~/vector_Add# cat ~/init_opencl.sh
export ALTERAOCLSDKROOT=/home/root/opencl_arm32_rte
export AOCL_BOARD_PACKAGE_ROOT=$ALTERAOCLSDKROOT/board/c5soc
export PATH=$ALTERAOCLSDKROOT/bin:$PATH
export LD_LIBRARY_PATH=$ALTERAOCLSDKROOT/host/arm32/lib:$LD_LIBRARY_PATH
insmod $AOCL_BOARD_PACKAGE_ROOT/driver/aclsoc_drv.ko

首先设置了几个环境变量:
ALTERAOCLSDKROOT
AOCL_BOARD_PACKAGE_ROOT
PATH
LD_LIBRARY_PATH
之后执行了insmod操作,加载驱动。
我们可以知道OpenCL的服务是由驱动模块$AOCL_BOARD_PACKAGE_ROOT/driver/aclsoc_drv.ko 提供的。
OK,就绪,下面先进入helloworld目录。
root@socfpga:~# cd helloworld/
root@socfpga:~/helloworld# ls
hello_world.aocxhelloworld

这个目录有hello_world.aocx和 helloworld两个文件。前者运行在FPGA上(OpenCL中称为核函数, Kernel),后者运行在ARM上(OpenCL中称为主机程序,Host Program)。两者编译过程如图所示。

运行步骤如下:
root@socfpga:~/helloworld# aocl program /dev/acl0 hello_world.aocx
aocl program: Running reprogram from /home/root/opencl_arm32_rte/board/c5soc/arm32/bin
Reprogramming was successful!
root@socfpga:~/helloworld# ./helloworld
Querying platform for info:
==========================
CL_PLATFORM_NAME                         = Altera SDK for OpenCL
CL_PLATFORM_VENDOR                     = Altera Corporation
CL_PLATFORM_VERSION                      = OpenCL 1.0 Altera SDK for OpenCL, Version 14.0

Querying device for info:
========================
CL_DEVICE_NAME                           = de1soc_sharedonly : Cyclone V SoC Development Kit
CL_DEVICE_VENDOR                         = Altera Corporation
CL_DEVICE_VENDOR_ID                      = 4466
CL_DEVICE_VERSION                        = OpenCL 1.0 Altera SDK for OpenCL, Version 14.0
CL_DRIVER_VERSION                        = 14.0
CL_DEVICE_ADDRESS_BITS                   = 64
CL_DEVICE_AVAILABLE                      = true
CL_DEVICE_ENDIAN_LITTLE                  = true
CL_DEVICE_GLOBAL_MEM_CACHE_SIZE          = 32768
CL_DEVICE_GLOBAL_MEM_CACHELINE_SIZE      = 0
CL_DEVICE_GLOBAL_MEM_SIZE                = 536870912
CL_DEVICE_IMAGE_SUPPORT                  = false
CL_DEVICE_LOCAL_MEM_SIZE               = 16384
CL_DEVICE_MAX_CLOCK_FREQUENCY            = 1000
CL_DEVICE_MAX_COMPUTE_UNITS            = 1
CL_DEVICE_MAX_CONSTANT_ARGS            = 8
CL_DEVICE_MAX_CONSTANT_BUFFER_SIZE       = 134217728
CL_DEVICE_MAX_WORK_ITEM_DIMENSIONS       = 3
CL_DEVICE_MAX_WORK_ITEM_DIMENSIONS       = 8192
CL_DEVICE_MIN_DATA_TYPE_ALIGN_SIZE       = 1024
CL_DEVICE_PREFERRED_VECTOR_WIDTH_CHAR    = 4
CL_DEVICE_PREFERRED_VECTOR_WIDTH_SHORT   = 2
CL_DEVICE_PREFERRED_VECTOR_WIDTH_INT   = 1
CL_DEVICE_PREFERRED_VECTOR_WIDTH_LONG    = 1
CL_DEVICE_PREFERRED_VECTOR_WIDTH_FLOAT   = 1
CL_DEVICE_PREFERRED_VECTOR_WIDTH_DOUBLE= 0
Command queue out of order?            = false
Command queue profiling enabled?         = true
Using AOCX: hello_world.aocx

Kernel initialization is complete.
Launching the kernel...

Thread #2: Hello from Altera's OpenCL Compiler!

Kernel execution is complete.



可见,运行成功了。
想看源代码,可以在DE1-SoC_openCL_BSP.zip中找到,路径为examples/helloworld/。
后缀为.cl的文件为核函数。上面例子的核函数如下:
// AOC kernel demonstrating device-side printf call
__kernel void hello_world(int thread_id_from_which_to_print_message) {
// Get index of the work item
unsigned thread_id = get_global_id(0);

if(thread_id == thread_id_from_which_to_print_message) {
    printf("Thread #%u: Hello from Altera's OpenCL Compiler!\n", thread_id);
}
}

类似C函数,只不过前缀加上“__kernel”关键词,指定它运行在设备(FPGA)上。使用Altera的OpenCL工具就可以编译为FPGA比特流配置文件。
这里的函数功能很简单,只是判断自身线程号是否与主机指定的相同,如果相同则输出一句话,其他线程保持沉默。

(未完,跟帖中)

dongliudongliu 发表于 2015-7-22 15:21:35

接着看下Host Program长什么样。
#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <cstring>
#include "CL/opencl.h"
#include "AOCL_Utils.h"

using namespace aocl_utils;

#define STRING_BUFFER_LEN 1024

// Runtime constants
// Used to define the work set over which this kernel will execute.
static const size_t work_group_size = 8;// 8 threads in the demo workgroup
// Defines kernel argument value, which is the workitem ID that will
// execute a printf call
static const int thread_id_to_output = 2;

// OpenCL runtime configuration
static cl_platform_id platform = NULL;
static cl_device_id device = NULL;
static cl_context context = NULL;
static cl_command_queue queue = NULL;
static cl_kernel kernel = NULL;
static cl_program program = NULL;

// Function prototypes
bool init();
void cleanup();
static void device_info_ulong( cl_device_id device, cl_device_info param, const char* name);
static void device_info_uint( cl_device_id device, cl_device_info param, const char* name);
static void device_info_bool( cl_device_id device, cl_device_info param, const char* name);
static void device_info_string( cl_device_id device, cl_device_info param, const char* name);
static void display_device_info( cl_device_id device );

// Entry point.
int main() {
cl_int status;

if(!init()) {
    return -1;
}

// Set the kernel argument (argument 0)
status = clSetKernelArg(kernel, 0, sizeof(cl_int), (void*)&thread_id_to_output);
checkError(status, "Failed to set kernel arg 0");

printf("\nKernel initialization is complete.\n");
printf("Launching the kernel...\n\n");

// Configure work set over which the kernel will execute
size_t wgSize = {work_group_size, 1, 1};
size_t gSize = {work_group_size, 1, 1};

// Launch the kernel
status = clEnqueueNDRangeKernel(queue, kernel, 1, NULL, gSize, wgSize, 0, NULL, NULL);
checkError(status, "Failed to launch kernel");

// Wait for command queue to complete pending events
status = clFinish(queue);
checkError(status, "Failed to finish");

printf("\nKernel execution is complete.\n");

// Free the resources allocated
cleanup();

return 0;
}

/////// HELPER FUNCTIONS ///////

bool init() {
cl_int status;

if(!setCwdToExeDir()) {
    return false;
}

// Get the OpenCL platform.
platform = findPlatform("Altera");
if(platform == NULL) {
    printf("ERROR: Unable to find Altera OpenCL platform.\n");
    return false;
}

// User-visible output - Platform information
{
    char char_buffer;
    printf("Querying platform for info:\n");
    printf("==========================\n");
    clGetPlatformInfo(platform, CL_PLATFORM_NAME, STRING_BUFFER_LEN, char_buffer, NULL);
    printf("%-40s = %s\n", "CL_PLATFORM_NAME", char_buffer);
    clGetPlatformInfo(platform, CL_PLATFORM_VENDOR, STRING_BUFFER_LEN, char_buffer, NULL);
    printf("%-40s = %s\n", "CL_PLATFORM_VENDOR ", char_buffer);
    clGetPlatformInfo(platform, CL_PLATFORM_VERSION, STRING_BUFFER_LEN, char_buffer, NULL);
    printf("%-40s = %s\n\n", "CL_PLATFORM_VERSION ", char_buffer);
}

// Query the available OpenCL devices.
scoped_array<cl_device_id> devices;
cl_uint num_devices;

devices.reset(getDevices(platform, CL_DEVICE_TYPE_ALL, &num_devices));

// We'll just use the first device.
device = devices;

// Display some device information.
display_device_info(device);

// Create the context.
context = clCreateContext(NULL, 1, &device, NULL, NULL, &status);
checkError(status, "Failed to create context");

// Create the command queue.
queue = clCreateCommandQueue(context, device, CL_QUEUE_PROFILING_ENABLE, &status);
checkError(status, "Failed to create command queue");

// Create the program.
std::string binary_file = getBoardBinaryFile("hello_world", device);
printf("Using AOCX: %s\n", binary_file.c_str());
program = createProgramFromBinary(context, binary_file.c_str(), &device, 1);

// Build the program that was just created.
status = clBuildProgram(program, 0, NULL, "", NULL, NULL);
checkError(status, "Failed to build program");

// Create the kernel - name passed in here must match kernel name in the
// original CL file, that was compiled into an AOCX file using the AOC tool
const char *kernel_name = "hello_world";// Kernel name, as defined in the CL file
kernel = clCreateKernel(program, kernel_name, &status);
checkError(status, "Failed to create kernel");

return true;
}

// Free the resources allocated during initialization
void cleanup() {
if(kernel) {
    clReleaseKernel(kernel);
}
if(program) {
    clReleaseProgram(program);
}
if(queue) {
    clReleaseCommandQueue(queue);
}
if(context) {
    clReleaseContext(context);
}
}

// Helper functions to display parameters returned by OpenCL queries
static void device_info_ulong( cl_device_id device, cl_device_info param, const char* name) {
   cl_ulong a;
   clGetDeviceInfo(device, param, sizeof(cl_ulong), &a, NULL);
   printf("%-40s = %lu\n", name, a);
}
static void device_info_uint( cl_device_id device, cl_device_info param, const char* name) {
   cl_uint a;
   clGetDeviceInfo(device, param, sizeof(cl_uint), &a, NULL);
   printf("%-40s = %u\n", name, a);
}
static void device_info_bool( cl_device_id device, cl_device_info param, const char* name) {
   cl_bool a;
   clGetDeviceInfo(device, param, sizeof(cl_bool), &a, NULL);
   printf("%-40s = %s\n", name, (a?"true":"false"));
}
static void device_info_string( cl_device_id device, cl_device_info param, const char* name) {
   char a;
   clGetDeviceInfo(device, param, STRING_BUFFER_LEN, &a, NULL);
   printf("%-40s = %s\n", name, a);
}

// Query and display OpenCL information on device and runtime environment
static void display_device_info( cl_device_id device ) {

   printf("Querying device for info:\n");
   printf("========================\n");
   device_info_string(device, CL_DEVICE_NAME, "CL_DEVICE_NAME");
   device_info_string(device, CL_DEVICE_VENDOR, "CL_DEVICE_VENDOR");
   device_info_uint(device, CL_DEVICE_VENDOR_ID, "CL_DEVICE_VENDOR_ID");
   device_info_string(device, CL_DEVICE_VERSION, "CL_DEVICE_VERSION");
   device_info_string(device, CL_DRIVER_VERSION, "CL_DRIVER_VERSION");
   device_info_uint(device, CL_DEVICE_ADDRESS_BITS, "CL_DEVICE_ADDRESS_BITS");
   device_info_bool(device, CL_DEVICE_AVAILABLE, "CL_DEVICE_AVAILABLE");
   device_info_bool(device, CL_DEVICE_ENDIAN_LITTLE, "CL_DEVICE_ENDIAN_LITTLE");
   device_info_ulong(device, CL_DEVICE_GLOBAL_MEM_CACHE_SIZE, "CL_DEVICE_GLOBAL_MEM_CACHE_SIZE");
   device_info_ulong(device, CL_DEVICE_GLOBAL_MEM_CACHELINE_SIZE, "CL_DEVICE_GLOBAL_MEM_CACHELINE_SIZE");
   device_info_ulong(device, CL_DEVICE_GLOBAL_MEM_SIZE, "CL_DEVICE_GLOBAL_MEM_SIZE");
   device_info_bool(device, CL_DEVICE_IMAGE_SUPPORT, "CL_DEVICE_IMAGE_SUPPORT");
   device_info_ulong(device, CL_DEVICE_LOCAL_MEM_SIZE, "CL_DEVICE_LOCAL_MEM_SIZE");
   device_info_ulong(device, CL_DEVICE_MAX_CLOCK_FREQUENCY, "CL_DEVICE_MAX_CLOCK_FREQUENCY");
   device_info_ulong(device, CL_DEVICE_MAX_COMPUTE_UNITS, "CL_DEVICE_MAX_COMPUTE_UNITS");
   device_info_ulong(device, CL_DEVICE_MAX_CONSTANT_ARGS, "CL_DEVICE_MAX_CONSTANT_ARGS");
   device_info_ulong(device, CL_DEVICE_MAX_CONSTANT_BUFFER_SIZE, "CL_DEVICE_MAX_CONSTANT_BUFFER_SIZE");
   device_info_uint(device, CL_DEVICE_MAX_WORK_ITEM_DIMENSIONS, "CL_DEVICE_MAX_WORK_ITEM_DIMENSIONS");
   device_info_uint(device, CL_DEVICE_MEM_BASE_ADDR_ALIGN, "CL_DEVICE_MAX_WORK_ITEM_DIMENSIONS");
   device_info_uint(device, CL_DEVICE_MIN_DATA_TYPE_ALIGN_SIZE, "CL_DEVICE_MIN_DATA_TYPE_ALIGN_SIZE");
   device_info_uint(device, CL_DEVICE_PREFERRED_VECTOR_WIDTH_CHAR, "CL_DEVICE_PREFERRED_VECTOR_WIDTH_CHAR");
   device_info_uint(device, CL_DEVICE_PREFERRED_VECTOR_WIDTH_SHORT, "CL_DEVICE_PREFERRED_VECTOR_WIDTH_SHORT");
   device_info_uint(device, CL_DEVICE_PREFERRED_VECTOR_WIDTH_INT, "CL_DEVICE_PREFERRED_VECTOR_WIDTH_INT");
   device_info_uint(device, CL_DEVICE_PREFERRED_VECTOR_WIDTH_LONG, "CL_DEVICE_PREFERRED_VECTOR_WIDTH_LONG");
   device_info_uint(device, CL_DEVICE_PREFERRED_VECTOR_WIDTH_FLOAT, "CL_DEVICE_PREFERRED_VECTOR_WIDTH_FLOAT");
   device_info_uint(device, CL_DEVICE_PREFERRED_VECTOR_WIDTH_DOUBLE, "CL_DEVICE_PREFERRED_VECTOR_WIDTH_DOUBLE");

   {
      cl_command_queue_properties ccp;
      clGetDeviceInfo(device, CL_DEVICE_QUEUE_PROPERTIES, sizeof(cl_command_queue_properties), &ccp, NULL);
      printf("%-40s = %s\n", "Command queue out of order? ", ((ccp & CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE)?"true":"false"));
      printf("%-40s = %s\n", "Command queue profiling enabled? ", ((ccp & CL_QUEUE_PROFILING_ENABLE)?"true":"false"));
   }
}

主机程序比较长,主要执行流程为:
初始化平台、寻找设备、打印设备信息、创建设备上下文、在设备上下文中创建指令队列、载入设备代码、编译设备代码、创建核函数对象、设置核函数参数、运行核函数、等待核函数运行结束、清除所有对象。
这是OpenCL的最基本流程,虽然比较繁琐,但熟悉之后几乎每次都是这几步,代码改动很少,真正需要用心设计的是核函数。

(未完,跟帖中)

dongliudongliu 发表于 2015-7-22 15:27:35

好了,再运行一个例子就睡觉。
进入上一级目录,然后切入vectorAdd,运行一下:

root@socfpga:~/helloworld# cd ..
root@socfpga:~# ls
README            helloworld      opencl_arm32_rtevector_Add
boardtest         init_opencl.sh    swapper
root@socfpga:~# cd vector_Add/
root@socfpga:~/vector_Add# ls
vectorAdd       vectorAdd.aocx
root@socfpga:~/vector_Add# aocl program /dev/acl0 vectorAdd.aocx
aocl program: Running reprogram from /home/root/opencl_arm32_rte/board/c5soc/arm32/bin
Reprogramming was successful!
root@socfpga:~/vector_Add# ./vectorAdd
Initializing OpenCL
Platform: Altera SDK for OpenCL
Using 1 device(s)
de1soc_sharedonly : Cyclone V SoC Development Kit
Using AOCX: vectorAdd.aocx
Launching for device 0 (1000000 elements)

Time: 107.127 ms
Kernel time (device 0): 6.933 ms

Verification: PASS



这是个向量相加的例子,也是很经典的并行计算例子。核函数内容如下:
__kernel void vectorAdd(__global const float *x,
                        __global const float *y,
                        __global float *restrict z)
{
    // get index of the work item
    int index = get_global_id(0);

    // add the vector elements
    z = x + y;
}


(未完,跟帖中)

dongliudongliu 发表于 2015-7-22 15:29:11

主机程序如下:
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "CL/opencl.h"
#include "AOCL_Utils.h"

using namespace aocl_utils;

// OpenCL runtime configuration
cl_platform_id platform = NULL;
unsigned num_devices = 0;
scoped_array<cl_device_id> device; // num_devices elements
cl_context context = NULL;
scoped_array<cl_command_queue> queue; // num_devices elements
cl_program program = NULL;
scoped_array<cl_kernel> kernel; // num_devices elements
scoped_array<cl_mem> input_a_buf; // num_devices elements
scoped_array<cl_mem> input_b_buf; // num_devices elements
scoped_array<cl_mem> output_buf; // num_devices elements

// Problem data.
const unsigned N = 1000000; // problem size
scoped_array<scoped_aligned_ptr<float> > input_a, input_b; // num_devices elements
scoped_array<scoped_aligned_ptr<float> > output; // num_devices elements
scoped_array<scoped_array<float> > ref_output; // num_devices elements
scoped_array<unsigned> n_per_device; // num_devices elements

// Function prototypes
float rand_float();
bool init_opencl();
void init_problem();
void run();
void cleanup();

// Entry point.
int main() {
// Initialize OpenCL.
if(!init_opencl()) {
    return -1;
}

// Initialize the problem data.
// Requires the number of devices to be known.
init_problem();

// Run the kernel.
run();

// Free the resources allocated
cleanup();

return 0;
}

/////// HELPER FUNCTIONS ///////

// Randomly generate a floating-point number between -10 and 10.
float rand_float() {
return float(rand()) / float(RAND_MAX) * 20.0f - 10.0f;
}

// Initializes the OpenCL objects.
bool init_opencl() {
cl_int status;

printf("Initializing OpenCL\n");

if(!setCwdToExeDir()) {
    return false;
}

// Get the OpenCL platform.
platform = findPlatform("Altera");
if(platform == NULL) {
    printf("ERROR: Unable to find Altera OpenCL platform.\n");
    return false;
}

// Query the available OpenCL device.
device.reset(getDevices(platform, CL_DEVICE_TYPE_ALL, &num_devices));
printf("Platform: %s\n", getPlatformName(platform).c_str());
printf("Using %d device(s)\n", num_devices);
for(unsigned i = 0; i < num_devices; ++i) {
    printf("%s\n", getDeviceName(device).c_str());
}

// Create the context.
context = clCreateContext(NULL, num_devices, device, NULL, NULL, &status);
checkError(status, "Failed to create context");

// Create the program for all device. Use the first device as the
// representative device (assuming all device are of the same type).
std::string binary_file = getBoardBinaryFile("vectorAdd", device);
printf("Using AOCX: %s\n", binary_file.c_str());
program = createProgramFromBinary(context, binary_file.c_str(), device, num_devices);

// Build the program that was just created.
status = clBuildProgram(program, 0, NULL, "", NULL, NULL);
checkError(status, "Failed to build program");

// Create per-device objects.
queue.reset(num_devices);
kernel.reset(num_devices);
n_per_device.reset(num_devices);
input_a_buf.reset(num_devices);
input_b_buf.reset(num_devices);
output_buf.reset(num_devices);

for(unsigned i = 0; i < num_devices; ++i) {
    // Command queue.
    queue = clCreateCommandQueue(context, device, CL_QUEUE_PROFILING_ENABLE, &status);
    checkError(status, "Failed to create command queue");

    // Kernel.
    const char *kernel_name = "vectorAdd";
    kernel = clCreateKernel(program, kernel_name, &status);
    checkError(status, "Failed to create kernel");

    // Determine the number of elements processed by this device.
    n_per_device = N / num_devices; // number of elements handled by this device

    // Spread out the remainder of the elements over the first
    // N % num_devices.
    if(i < (N % num_devices)) {
      n_per_device++;
    }

    // Input buffers.
    input_a_buf = clCreateBuffer(context, CL_MEM_READ_ONLY,
      n_per_device * sizeof(float), NULL, &status);
    checkError(status, "Failed to create buffer for input A");

    input_b_buf = clCreateBuffer(context, CL_MEM_READ_ONLY,
      n_per_device * sizeof(float), NULL, &status);
    checkError(status, "Failed to create buffer for input B");

    // Output buffer.
    output_buf = clCreateBuffer(context, CL_MEM_WRITE_ONLY,
      n_per_device * sizeof(float), NULL, &status);
    checkError(status, "Failed to create buffer for output");
}

return true;
}

// Initialize the data for the problem. Requires num_devices to be known.
void init_problem() {
if(num_devices == 0) {
    checkError(-1, "No devices");
}

input_a.reset(num_devices);
input_b.reset(num_devices);
output.reset(num_devices);
ref_output.reset(num_devices);

// Generate input vectors A and B and the reference output consisting
// of a total of N elements.
// We create separate arrays for each device so that each device has an
// aligned buffer.
for(unsigned i = 0; i < num_devices; ++i) {
    input_a.reset(n_per_device);
    input_b.reset(n_per_device);
    output.reset(n_per_device);
    ref_output.reset(n_per_device);

    for(unsigned j = 0; j < n_per_device; ++j) {
      input_a = rand_float();
      input_b = rand_float();
      ref_output = input_a + input_b;
    }
}
}

void run() {
cl_int status;

const double start_time = getCurrentTimestamp();

// Launch the problem for each device.
scoped_array<cl_event> kernel_event(num_devices);
scoped_array<cl_event> finish_event(num_devices);

for(unsigned i = 0; i < num_devices; ++i) {

    // Transfer inputs to each device. Each of the host buffers supplied to
    // clEnqueueWriteBuffer here is already aligned to ensure that DMA is used
    // for the host-to-device transfer.
    cl_event write_event;
    status = clEnqueueWriteBuffer(queue, input_a_buf, CL_FALSE,
      0, n_per_device * sizeof(float), input_a, 0, NULL, &write_event);
    checkError(status, "Failed to transfer input A");

    status = clEnqueueWriteBuffer(queue, input_b_buf, CL_FALSE,
      0, n_per_device * sizeof(float), input_b, 0, NULL, &write_event);
    checkError(status, "Failed to transfer input B");

    // Set kernel arguments.
    unsigned argi = 0;

    status = clSetKernelArg(kernel, argi++, sizeof(cl_mem), &input_a_buf);
    checkError(status, "Failed to set argument %d", argi - 1);

    status = clSetKernelArg(kernel, argi++, sizeof(cl_mem), &input_b_buf);
    checkError(status, "Failed to set argument %d", argi - 1);

    status = clSetKernelArg(kernel, argi++, sizeof(cl_mem), &output_buf);
    checkError(status, "Failed to set argument %d", argi - 1);

    // Enqueue kernel.
    // Use a global work size corresponding to the number of elements to add
    // for this device.
    //
    // We don't specify a local work size and let the runtime choose
    // (it'll choose to use one work-group with the same size as the global
    // work-size).
    //
    // Events are used to ensure that the kernel is not launched until
    // the writes to the input buffers have completed.
    const size_t global_work_size = n_per_device;
    printf("Launching for device %d (%d elements)\n", i, global_work_size);

    status = clEnqueueNDRangeKernel(queue, kernel, 1, NULL,
      &global_work_size, NULL, 2, write_event, &kernel_event);
    checkError(status, "Failed to launch kernel");

    // Read the result. This the final operation.
    status = clEnqueueReadBuffer(queue, output_buf, CL_FALSE,
      0, n_per_device * sizeof(float), output, 1, &kernel_event, &finish_event);

    // Release local events.
    clReleaseEvent(write_event);
    clReleaseEvent(write_event);
}

// Wait for all devices to finish.
clWaitForEvents(num_devices, finish_event);

const double end_time = getCurrentTimestamp();

// Wall-clock time taken.
printf("\nTime: %0.3f ms\n", (end_time - start_time) * 1e3);

// Get kernel times using the OpenCL event profiling API.
for(unsigned i = 0; i < num_devices; ++i) {
    cl_ulong time_ns = getStartEndTime(kernel_event);
    printf("Kernel time (device %d): %0.3f ms\n", i, double(time_ns) * 1e-6);
}

// Release all events.
for(unsigned i = 0; i < num_devices; ++i) {
    clReleaseEvent(kernel_event);
    clReleaseEvent(finish_event);
}

// Verify results.
bool pass = true;
for(unsigned i = 0; i < num_devices && pass; ++i) {
    for(unsigned j = 0; j < n_per_device && pass; ++j) {
      if(fabsf(output - ref_output) > 1.0e-5f) {
      printf("Failed verification @ device %d, index %d\nOutput: %f\nReference: %f\n",
            i, j, output, ref_output);
      pass = false;
      }
    }
}

printf("\nVerification: %s\n", pass ? "PASS" : "FAIL");
}

// Free the resources allocated during initialization
void cleanup() {
for(unsigned i = 0; i < num_devices; ++i) {
    if(kernel && kernel) {
      clReleaseKernel(kernel);
    }
    if(queue && queue) {
      clReleaseCommandQueue(queue);
    }
    if(input_a_buf && input_a_buf) {
      clReleaseMemObject(input_a_buf);
    }
    if(input_b_buf && input_b_buf) {
      clReleaseMemObject(input_b_buf);
    }
    if(output_buf && output_buf) {
      clReleaseMemObject(output_buf);
    }
}

if(program) {
    clReleaseProgram(program);
}
if(context) {
    clReleaseContext(context);
}
}

将100w维度的两个向量相加,用时107.127ms,你可以试试只用ARM计算,看需要多久,对比下性能。

好了,今天到此为止,大家晚安!

(完)
页: [1]
查看完整版本: 【Altera SoC体验之旅】+ 正式开启OpenCL模式